Attenuated Glial K+ Clearance Contributes to Long-Term Synaptic Potentiation Via Depolarizing GABA in Dorsal Horn Neurons of Rat Spinal Cord
نویسندگان
چکیده
It has been reported that long-term enhancement of superficial dorsal horn (DHs) excitatory synaptic transmission underlies central sensitization, secondary hyperalgesia, and persistent pain. We tested whether impaired clearance of K(+) and glutamate by glia in DHs may contribute to initiation and maintenance of the CNS pain circuit and sensorimotor abnormalities. Transient exposure of the spinal cord slice to fluorocitrate (FC) is shown to be accompanied by a protracted decrease of the DHs optical response to repetitive electrical stimulation of the ipsilateral dorsal root, and by a similarly protracted increase in the postsynaptic response of the DHs like LTP. It also is shown that LTPFC does not occur in the presence of APV, and becomes progressively smaller as [K(+)]o in the perfusion solution decreased from 3.0 mM to 0.0 mM. Interestingly LTPFC is reduced by bath application of Bic. Whole-cell patch recordings were carried out to evaluate the effects of FC on the response of DHs neurons to puffer-applied GABA. The observations reveal that transient exposure to FC is reliably accompanied by a prolonged (>1 hr) depolarizing shift of the equilibrium potential for the DHs neuron transmembrane ionic currents evoked by GABA. Considered collectively, the findings demonstrate that LTPFC involves (1) elevation of [K(+)]o in the DHs, (2) NMDAR activation, and (3) conversion of the effect of GABA on DHs neurons from inhibition to excitation. It is proposed that a transient impairment of astrocyte energy production can trigger the cascade of dorsal horn mechanisms that underlies hyperalgesia and persistent pain.
منابع مشابه
Heterosynaptic long-term potentiation at GABAergic synapses of spinal lamina I neurons.
Neurons in spinal dorsal horn lamina I play a pivotal role for nociception that critically depends on a proper balance between excitatory and inhibitory inputs. Any modification in synaptic strength may challenge this delicate balance. Long-term potentiation (LTP) at glutamatergic synapses between nociceptive C-fibers and lamina I neurons is an intensively studied cellular model of pain amplifi...
متن کاملLong-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord.
Synaptic transmission between dorsal root afferents and neurons in the superficial laminae of the spinal dorsal horn (laminae I-III) was examined by intracellular recording in a transverse slice preparation of rat spinal cord. Brief high-frequency electrical stimulation (300 pulses at 100 Hz) of primary afferent fibers produced a long-term potentiation (LTP) or a long-term depression (LTD) of f...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کاملGlial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn.
We investigated a presynaptic form of long-term potentiation (LTP) in horizontal slices of the rat spinal cord by visualizing presynaptic and postsynaptic excitation with a voltage-sensitive dye. To record presynaptic excitation, we stained primary afferent fibers anterogradely from the dorsal root. A single-pulse test stimulation of C fiber-activating strength to the dorsal root elicited actio...
متن کامل